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Long-Term Performance of a Porous Friction Course

Introduction  

In 2003, the Indiana Department of Transportation 

(INDOT) and the Federal Highway Administration 

allowed a test section of Porous Friction Course 

(PFC) to be placed on I74 east of Indianapolis.  The 

design, construction and early performance of that 

surface were compared to an adjacent Stone Matrix 

Asphalt (SMA) surface and a conventional 

Superpave HMA surface in a report prepared for the 

Institute for Safe, Quiet and Durable Highways (1).  

The early performance indicated that the PFC offered 

several advantages over the SMA and the HMA 

surfaces, including reduced tire/pavement noise, high 

friction and surface texture, and reduced splash and 

spray.  There was a concern, however, that porous 

surfaces can lose their porosity, and therefore their 

performance advantages, over time.  Therefore, the 

project summarized in this report was planned to 

continue monitoring the performance of the PFC and 

the comparison surfaces to investigate the 

durability of the experimental surface over a total 

of five years after construction. 

 

This research project monitored the performance 

of an experimental porous friction course and 

compared that performance to an SMA and a 

conventional HMA surface over a four-year 

period (total of five years after construction) to 

determine: 

 the tire-pavement noise generated by 

traffic on these three pavement surface 

types and changes in noise versus time, 

 the changes in surface textures and 

frictional properties of these pavement 

surfaces over time, and  

 the overall performance of these three 

surface types versus time.  

Findings  

The results of this long term evaluation of a 

Porous Friction Course (PFC) showed that PFC 

surfaces could perform well under Indiana 

conditions.  The PFC provided sound pressure 

levels that were significantly lower than those of 

comparable SMA and DGA surfaces for both 

heavy trucks and passenger cars.  The PFC 

surface maintained its macrotexture, and the 

voids did not clog over the life of the study 

under fast-moving interstate traffic.  The PFC 

and SMA both provided similar, stable friction 

levels.  There was a marked reduction in splash 

and spray from vehicles travelling over the PFC 

during a rain event as compared to the SMA.  

Visual inspections show that both the PFC and 

the SMA are performing well after five years 

under relatively heavy interstate traffic. 

Implementation  

The primary focus of this study was on 

investigating the performance of PFCs under 

Indiana conditions.  A follow up study 

comparing a longer section of PFC (10 miles or 

so) to an SMA on an interstate highway is 

recommended in order to more fully explore the 

impacts of the PFC on safety (accident rates, 

visibility and friction) and cost (initial and 

maintenance).  

 

Based on the good performance of the 

experimental PFC surface evaluated in this study, 

INDOT now has a new tool that can be used to 

provide high quality, high friction surfaces while 

also providing reduced tire/pavement noise and 
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reduced splash and spray.  The use of this type of 

surface should be considered by the Office of 

Pavement Engineering and the Pavement Design 

Committee on a case by case basis for special 

locations as they determine the appropriate 

pavement design for a given project.  If the 

results of the proposed follow-up study are 

favorable, use of PFCs could expand to more 

locations where the added cost if justified based 

on safety enhancements. 

 

There are, however, some caveats that the 

implementers should consider.  First, the 

performance of PFCs has not been verified under 

lower and slower traffic conditions, so they 

should only be specified for high speed roadways 

with moderate to high traffic volumes without 

additional evidence to support their use under 

other traffic conditions.  Second, there may be an 

increase in winter maintenance costs associated 

with the use of PFCs because of the observed 

need for more frequent applications of deicing 

chemicals.  This increase is not expected to be 

significant unless the use of PFCs becomes 

common.  Third, under current FHWA policy, 

the use of a quiet pavement surface does not 

reduce the need for noise mitigation (most 

commonly a noise barrier wall) on Federal-Aid 

projects, if abatement is required.  Therefore, 

PFCs would most likely be used on non-Federal 

Aid projects where reduced noise, reduced splash 

and spray or high friction is desirable and where 

their use can obviate the need for a noise barrier 

wall.  Eliminating or reducing the height of a 

barrier wall can offset the added material costs 

due to the PFC.  Eventually FHWA policy may 

change in this regard, allowing pavement type to 

be considered for mitigation.  If so, INDOT 

could make even greater use of this successful 

quiet pavement technology. 
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Abstract 
 
In 2003, the Indiana Department of Transportation and the Federal Highway Administration 
allowed a test section of Porous Friction Course (PFC) to be placed on I74 east of Indianapolis.  
The design, construction and early performance of that surface were compared to an adjacent 
SMA surface and a conventional Superpave HMA (DGA) surface in a report prepared for the 
Institute for Safe, Quiet and Durable Highways (1).  The early performance indicated that the 
PFC offered several advantages over the SMA and the conventional surfaces, including reduced 
tire/pavement noise, high friction and surface texture, and reduced splash and spray.  There 
was a concern, however, that porous surfaces can lose their porosity, and therefore their 
performance advantages, over time.  Consequently, the project summarized in this report was 
planned to continue monitoring the performance of the PFC and the comparison surfaces in 
order to investigate the durability of the porous surface over a five-year period (after 
construction). 
 
After five years under traffic, there have indeed been some changes in these properties.  Most 
of the changes, however, took place quickly as the asphalt binder film coating the exposed 
aggregate particles was worn off by traffic.  Since then, the changes have been relatively minor.  
The PFC section is still significantly quieter than the adjacent SMA section to which it has been 
compared.  The PFC has retained most of its texture and is still providing good friction levels.  
Both the PFC and the SMA are still in very good condition with little distress and have higher 
friction levels than a section of dense graded asphalt constructed with similar materials that has 
also been evaluated for the duration of the study. 
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CHAPTER 1.   INTRODUCTION 

 

In 2003, the Indiana Department of Transportation (INDOT) and the Federal Highway 
Administration allowed a test section of Porous Friction Course (PFC) to be placed on I74 east 
of Indianapolis.  The design, construction and early performance of that surface were compared 
to an adjacent Stone Matrix Asphalt (SMA) surface and a conventional Superpave DGA surface 
in a report prepared for the Institute for Safe, Quiet and Durable Highways (1).  The early 
performance indicated that the PFC offered several advantages over the SMA and the DGA 
surfaces, including reduced tire/pavement noise, high friction and surface texture, and reduced 
splash and spray.  There was a concern, however, that porous surfaces can lose their porosity, 
and therefore their performance advantages, over time.  Therefore, the project summarized in 
this report was planned to continue monitoring the performance of the PFC and the comparison 
surfaces to investigate the durability of the experimental surface over a total of five years after 
construction. 
 

1.1    Background and Literature Review 

Traffic noise is an increasing problem for many transportation agencies as the public is 
becoming more aware of the issue and more demanding of solutions.  Traffic noise comes from 
two major sources, the power train (engine, exhaust and cooling system) and the tires.  
(Although also present, aerodynamic noise is usually a lesser source (2).)  Tire pavement noise 
has been shown to be a major contributor to the overall noise level (3).  Noise generated by the 
tire/pavement interaction dominates over the noise produced by the power train at typical 
highway or interstate speeds.  Tire/pavement noise-generating mechanisms include radial and 
tangential vibrations, air resonance and other mechanisms (2, 3).  Modification of the 
tire/pavement interface can affect these mechanisms and reduce the noise generated. 
 
Noise barrier walls can also be erected in an attempt to mitigate the noise, but experience and 
evidence is mounting to show that noise can be better and more economically controlled at the 
source by designing quieter pavement surfaces.  Current FHWA policy and the Traffic Noise 
Model, however, do not recognize pavement type as a noise mitigation technique (4-6).  If 
noise mitigation is required, erection of a noise barrier wall is generally the only practical option.  
In recent years, however, the FHWA has developed a Quiet Pavements Pilot Program in order 
to collect the data necessary to examine the effectiveness of pavement strategies for reducing 
noise and determine if a change in these policies is warranted (7).  This program was initiated 
in response to the successful use of quiet pavements in Arizona and interest from other states. 
 
The noise generated at the tire/pavement interface depends on environmental conditions, the 
speed of the vehicle, type of tire, type of pavement surface and the dynamics of the rolling 
process.  Some European countries have successfully reduced tire/pavement noise on highways 
through the use of porous road surfaces (3, 8-11).  Porous asphalt mixes made with hard 
aggregates, a modified asphalt binder and sometimes stabilizing fibers are widely used.  The 
structure of a porous asphalt surface contains interconnected voids, which can drain away 
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rainwater during wet weather.  The porous structure can also reduce tire/pavement noise by 
reducing some noise generation and propagation mechanisms.  Porous pavements have also 
proven to be durable, to possess good surface friction and to decrease splash and spray during 
rain events (8).  Similar porous surfaces used in the United States are alternatively called 
Permeable European Mixes (PEM) or Porous Friction Courses (PFCs).  (In this report, the terms 
“porous surfaces,” “porous asphalt” or “porous mixes” are sometimes used generically for these 
European-style noise reducing highway surfaces.  It should be noted that these mixes are not 
necessarily the same as porous asphalt mixes used for drainage and groundwater recharge, 
which are more appropriate for parking lots and low speed roadways.) 
 
Open graded friction courses (OGFCs) used in Indiana and other states in the past differ from 
current porous asphalt surfaces.  In general, OGFCs have had lower void percentages (10-
15%); usually used unmodified binders, at least in Indiana; and were less durable than porous 
asphalt mixes (9). Porous asphalt mixes, on the other hand, generally have strongly gap-graded 
aggregate gradations to yield higher air voids (18-22 percent) (9).  High quality aggregates are 
needed to provide good aggregate interlock and long-lasting frictional properties in these mixes. 
 
When INDOT used OGFC surfaces many years ago, they experienced problems with the surface 
voids clogging, especially when abrasives were used for snow and ice control.  There is, 
therefore, a concern over how long the benefits of the PFC can be maintained.  If the surface 
texture becomes clogged or decreases, will the PFC lose its frictional, noise control and splash 
and spray properties? 
 
Today’s PFC mixes are designed with higher air voids than the OGFCs on the theory that the 
suction effect of traffic will expel fine material from the pores, thus preventing this loss of 
texture.  European experience suggests that this theory holds true for properly designed and 
constructed porous mixtures (14).  The project reported on here was initiated to continue 
monitoring of the test sections for a period of five years after construction to determine if and 
when the PFC would begin to lose its surface texture and other properties. 
 
In late 2009, the National Cooperative Highway Research Program (NCHRP) published NCHRP 
Report 640, Construction and Maintenance Practices for Permeable Friction Courses (15).  This 
report includes the results of a survey of national and international agency specifications, 
practices and experiences with PFCs as well as a literature review.  Based on this review of the 
literature and practices, three draft AASHTO standards related to PFCs were prepared; one 
dealing with Materials, Design and Construction of Permeable Friction Courses; one on the 
Standard Method of Test for Determining the Abrasion Loss of Permeable Friction courses 
Asphalt Specimens by the Cantrabro Procedure; and one Standard Practice for Maintenance and 
Rehabilitation of Permeable Friction Courses.  Review, revision and balloting of these drafts is 
being initiated at AASHTO (16), so pending favorable outcomes of these efforts, national 
standards for PFCs should be available in the near future. 
 
This project found that PFCs are increasingly popular in the US because of their safety and 
environmental benefits.  Specific attributes cited include reduced hydroplaning, splash and 
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spray, glare and tire/pavement noise.  The report also noted improvements in friction, visibility 
of pavement marking materials, and the water quality of runoff. (15) 
 
PFC surfaces last between 8 and 12 years typically, according to the NCHRP report, and are 
resistant to permanent deformation.  Research shows that the PFC helps to keep the underlying 
layers cooler, which increases their stiffness and resistance to rutting.  (15) 
 
Most agencies responding to the survey indicated that they do not assign a structural value to 
the PFC layer, but about one-quarter of them do.  While little information was provided in the 
report on the typical pavement cross sections used, conversation with the primary author of the 
report, Dr. Allen Cooley,  showed that while some states do use SMA under the PFC (Georgia 
and Alabama, for example), other states do not (such as New Jersey). (17)  The performance of 
the pavements has been good with and without SMA.  The use of premium aggregates in the 
underlying layer is not necessary as long as the mixture is rut resistant.  This offers the 
possibility of offsetting the higher cost of the PFC by using less expensive materials underneath 
without sacrificing performance.  Cooley did not recommend the use of sealants under the PFC 
as these have been shown to increase the chances of stripping in underlying layers. 
 
 

1.2  Problem Statement 

In the initial study, the PFC section did exhibit lower noise levels, improved friction and reduced 
splash and spray compared to an SMA and a conventional HMA (Superpave Dense Graded 
Asphalt (DGA)) surface in the short term (1).  This suggested that PFC may offer an effective 
and economical way to reduce noise while maintaining, or even improving, friction and visibility.  
The long term performance of PFC under Indiana conditions was unknown, however. 
 
Based on the favorable early results, briefly summarized in Chapter 2, it was determined that 
research was needed to evaluate the longevity of Porous Friction Courses and their perceived 
benefits under typical Indiana climate, traffic and material conditions.  The approach used in 
this extended evaluation is summarized in Chapter 3, and the results are presented and 
analyzed in Chapter 4.  Conclusions and recommendations based on the results are then 
presented in Chapters 5 and 6. 
 

1.3  Objectives 

This research project monitored the performance of an experimental porous friction course and 
compared that performance to an SMA and a conventional DGA surface over a four-year period 
(total of five years after construction) to determine: 

 the tire-pavement noise generated by traffic on these three pavement surface types and 
changes in noise versus time, 

 the changes in surface textures and frictional properties of these pavement surfaces 
over time, and  
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 the overall performance of these three surface types versus time. 
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CHAPTER 2.   INITIAL FINDINGS AND RECOMMENDATIONS 

 

The initial field evaluation included three test sections.  The porous friction course (PFC) and 
stone matrix asphalt (SMA) sections are located on Interstate Highway 74 east of Indianapolis.  
These adjacent sections were constructed by Milestone Contractors, LP, in August 2003.  The 
third section consists of a conventional Superpave (DGA) section located on US52 in Lafayette 
that was paved in July 2003.  This study continued the monitoring of the performance of these 
same three sections for four years, or a total of just over five years after construction.  
Additional details are available in the final report on the initial study (1). 
 

2.1  Materials and Mixtures 

The PFC and SMA mixes were very similar in terms of the component materials used since both 
were placed on the same project and were designed to reduce the variables between them.  
The conventional mixture was not designed as part of this experiment, but was instead selected 
from recently constructed projects to represent typical INDOT mixes.  A completed project on 
US52 near West Lafayette was used as the field test site for the conventional DGA noise testing.  
(Conventional mixtures in Indiana are dense graded asphalt mixes (DGA) designed according to 
Superpave specifications but are not placed on interstates.)   
 
All of the mixtures evaluated used steel slag aggregate from the same source, though in 
different proportions and combined with various other aggregates and additives.  (Details of the 
gradations and mix designs are provided in the next section.)  The SMA and PFC mixes have the 
most in common, as noted above.  The PFC was composed of 90% steel slag with 10% 
manufactured sand.  The SMA consisted of 80% steel slag, 10% stone sand (from a different 
source than the PFC sand) and 10% mineral filler.  The same binder, an SBS-modified PG76-22, 
was also used in these two mixes.  The PFC included 0.3% cellulose fiber, and the SMA 
included 0.1% of the same fiber. 
 
The conventional DGA consisted of steel slag coarse aggregate, from the same source as the 
PFC and SMA, blended 50-50 with dolomite.  The mix also contained dolomitic manufactured 
sand.  A PG76-22 binder was used, but it was from a different source than that used in the PFC 
and SMA. 
 

2.2   Mix Designs 

The PFC was designed by Milestone with assistance from Heritage Research Group.  Trial mixes 
were prepared and compacted to 20 gyrations in a Superpave Gyratory Compactor.  The air 
void content was then measured.  The target air void content was 18-22%.  Table 2.1 shows 
the final mix design for the PFC in the second column.  The gradations of all three mixes used 
in this research are shown graphically in Figure 2.1. 
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Table 2.1.  Mix Design Parameters 

Parameter PFC SMA DGA 

12.5mm 100 100 100 

9.5mm 83.0 84.7 94.0 

4.75mm 27.9 39.1 64.3 

2.36mm 12.5 26.9 46.0 

1.18mm 8.6 21.0 -- 

0.600mm 6.0 17.7 17.0 

0.300mm 4.6 15.0 -- 

0.150mm 3.3 13.3 -- 

0.075mm 2.4 10.1 5.5 

PG Grade 76-22 76-22 76-22 

Pb, % 5.7 5.5 5.7 

Air Voids, % 23.1 4.0 4.0 

VMA, % -- 17.7 15.5 

Gsb 3.57 3.48 2.95 

Gmm 3.19 3.15 2.75 

Fiber, % 0.3 0.1 -- 
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Figure 2.1.  Gradations of the Experimental Mixtures 
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Following design of the PFC mixture, the Cantabro test was used to assess the durability of the 
mixture.  This test consists of placing Marshall compacted specimens in an LA abrasion machine 
and revolving for 300 revolutions without the steel balls that are typically used in the LA 
abrasion test.  The mass lost during this process, expressed as a percent of the original mass of 
the specimens, is the Cantabro mass loss.  European specifications call for the mass loss to be 
less than 25% for unaged specimens and less than 30% for aged specimens.  The maximum 
mass losses for specimens of this mix were 15.0% for the unaged specimens and 24.9% for the 
aged specimens. 
 
The SMA was also designed by Milestone using the same steel slag, same fiber and same binder 
as used in the PFC.  The details are shown in the third column of Table 2.1.  This mix was 
designed at an Ndesign level of 100 gyrations for a traffic category of 10 to 30 million ESALs.  The 
SMA gradation was similar to the PFC in the larger sizes, but had much higher amounts passing 
the smaller sieve sizes, as shown in Figure 2.1.  This is typical since the SMA was designed for 
4% air voids versus 18-22% for the PFC.  SMAs generally consist of a somewhat gap-graded 
aggregate structure with a high voids in mineral aggregate (VMA) content to ensure good stone 
on stone contact.  The space between the aggregate particles is then mostly filled with a mastic 
of binder (often polymer modified, as in this case), fibers (cellulose) and mineral filler.   
 
The fibers in both the PFC and the SMA are added to keep the binder from flowing off the 
coarse aggregate particles, a phenomenon known as draindown.  Fibers also reinforce the 
mixes somewhat, which may help control rutting and cracking in the future.  Modified binders 
also help to reduce draindown by virtue of their typically higher viscosity. 
 
The conventional mix was designed according to Superpave mix design procedures as outlined 
in AASHTO MP2, Standard Specifications for Superpave Volumetric Mix Design, and PP28, 
Standard Practice for Superpave Volumetric Design for Hot Mix Asphalt (HMA), for a design 
traffic level of 10 to 30 million ESALs.  The Ndesign value was 100 gyrations, as for the SMA.  The 
final mix design is shown in the last column of Table 2.1.  
 
The binder contents by weight shown in Table 2.1 appear to be similar for all three mixtures.  
In terms of volume, however, the binder contents of the SMA and PFC mixes were higher than 
the DGA because the steel slag aggregate in the PFC and SMA has a higher specific gravity than 
the slag-dolomite blend of aggregate used in the DGA. 
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2.3  Construction of the Experimental Sections 

All three of the pavement sections were constructed in 2003 using typical construction 
equipment and operations.  (For more detailed information, refer to the final report on Phase 1 
(1).)  The PFC and SMA mixes were placed using a material transfer device (MTD) to improve 
ride quality and control mix segregation.  The MTD transferred mix from the haul trucks to the 
hopper of a conventional paver.  Compaction was accomplished with two steel wheeled rollers.  
Only one pass with each roller was needed to seat the PFC and SMA, since relatively little 
compactive effort is needed to bring the coarse aggregates into contact and because over-
rolling can lead to aggregate breakdown.  Due to the gap-graded nature of those mixes, there 
is extensive stone-to-stone contact between the coarse aggregate particles with very little 
mastic or fine material to “cushion” the coarse aggregates; this is especially true for the PFC. 
 
During construction of the PFC and SMA sections, mixture production proceeded smoothly.  No 
significant mixture problems were observed, and no mixture quality penalties were assessed.   
 
Samples of the PFC were collected by Heritage Research Group for shear testing for 
informational purposes.  Six cores were taken from the road and tested for density.  Air voids 
ranged from 22.0% to 24.9% with an average of 22.5%.  Air voids were measured using ASTM 
D3203, Standard Test Method for Percent Air Voids in Compacted Dense and Open Bituminous 
Paving Mixtures, which uses the dimensions of the specimen to calculate volume. 

2.4  Initial Field Testing Methods 

In the initial short-term study, noise measurements were made on all three surfaces using both 
the pass-by and close-proximity methods.  These methods are described in some detail in 
Chapter 3.  For the initial study, the field testing of the PFC and SMA sections was conducted 
before the road was opened to traffic, which influenced both the test results and the methods 
which could be used to evaluate the performance, as will be explained later.  The DGA section 
had been exposed to traffic prior to testing, but only for a short time (about two months) and 
at a lower traffic volume.  Pavement surface characteristics are known to change under traffic.  
For example, traffic wears away the binder coating aggregates on the surface, which influences 
friction. 
 
Tire-pavement noise measurements were conducted initially using two different methods.  The 
controlled pass-by method was employed to measure the noise near the side of the road, while 
the close-proximity method was used to assess noise near the tire-pavement interface.   
 
The three surfaces were also evaluated in the initial study with respect to their surface texture 
and friction by means of the Circular Texture Meter (CTM) and Dynamic Friction Tester (DFT), 
respectively.  (These devices are both described in section 3.2 below.)  Splash and spray were 
judged qualitatively. 
 
The detailed results of all these tests are available in the final report (1). 
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2.5  Conclusions and Recommendations from the Short-Term Study 

The previous short-term field evaluation led to the following conclusions (1): 
 PFC mixtures can be designed to provide the desired air void content using Indiana 

materials.  Mixture volumetric and Cantabro mass loss requirements were met using steel 
slag aggregate, polymer modified binder and cellulose fibers. 

 The PFC had a more open gradation than the SMA.  Both mixes were significantly more 
gap-graded than conventional Superpave DGA mixtures. 

 The PFC did exhibit fairly low complex shear moduli when tested in the Frequency Sweep 
test in the Superpave Shear Tester at 40 C.  Due to the reliance of this type of mixture 
on stone to stone contact, rather than a close packing of aggregates held together by a 
mastic of binder and fines, a high modulus would not be expected in an unconfined test.  
Without confining pressure, the stone to stone contact is not fully mobilized. 

 Construction of the PFC and SMA mixtures proceeded smoothly with no major problems 
noted.  Conventional equipment was used to produce, place and compact the mixes.  
Two steel wheeled rollers each applied one pass to seat the PFC; over-rolling should be 
avoided. 

 The surface texture of the PFC is visually more open than that of the SMA.  The DGA 
exhibited an even more uniform, dense surface by comparison. 

 The noise, friction and surface texture measurements for the PFC and SMA mixes were 
made before the road was opened to traffic.  Traffic action would be expected to wear 
away the binder film coating on the protruding aggregates, increasing the surface 
friction. 

 Both close-proximity and pass-by noise testing showed that the PFC produced the lowest 
measured tire/pavement noise levels, the conventional DGA produced the next lowest 
noise levels and the SMA produced the highest noise levels. 

 Close-proximity testing at two different speeds showed the DGA to produce noise levels 
that were 3.6 dB(A) higher than the PFC, and the SMA produced noise levels that were 
4.8 dB(A) higher than the PFC. 

 Pass-by noise measurements at 80 km/h (50 mph) showed that the DGA produced noise 
levels that were 4.2 dB(A) higher than the PFC, and the SMA produced noise levels that 
were 5.0 dB(A) higher than the PFC. 

 Since the decibel scale is logarithmic, not linear, these differences in noise level are 
significant. 

 Surface texture measurements using the Circular Texture Meter confirmed that the PFC 
had a much higher surface texture than the conventional DGA.  The SMA also had a 
higher surface texture than the DGA, but not as high as the PFC. 

 The PFC also provided higher friction than the DGA and SMA in terms of International 
Friction Index.  The PFC and SMA friction values are expected to increase after traffic 
wears away the binder film coating. 

 Visual observations of splash and spray showed that the PFC did significantly reduce the 
amount of water on the pavement surface, resulting in better visibility for drivers. 

 Long term performance of the PFC section should be monitored to determine how long 
the improved performance will last. 
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CHAPTER 3. CURRENT STUDY APPROACH 

 
The tests used in the initial field evaluation were found to be appropriate for investigating the 
performance of and differences among the three pavement surfaces.  Consequently, noise, 
friction and texture measurements were continued in this follow-up monitoring project.  
Additional tests or evaluations included visual inspections and towed friction trailer 
measurements. 
 

3.1  Noise Testing Methods 

To monitor the changes in noise generation with time and to investigate any seasonal 
variations, pass-by noise measurements were conducted periodically.  There are currently two 
commonly used pass-by measurement techniques, the statistical pass-by and controlled pass-by 
methods.  These pass-by or sideline methods involve placing microphones at prescribed 
distances from the side of the roadway and measuring the peak sound level as vehicles travel 
past the microphones, as shown in Figure 3.1.  In the statistical pass-by (SPB) method, the 
noise from random vehicles in the existing traffic stream is measured.  The vehicles must be 
acoustically isolated from the traffic stream, so that each can be measured independently.  The 
International Standard (ISO 11819-1), which was used here, calls for placing microphones 7.5 
m (25 ft) from the center of the vehicle lane at a height of 1.2 m (4 ft) above the pavement.  
The noise characteristics and speeds of 180 vehicles (100 automobiles and 80 dual-axle and 
multi-axle trucks) are measured and analyzed.  From the data, a Statistical Pass-by Index 
(SBPI) can be developed for a particular pavement site.  In the SPB method, the vehicle speeds 
are measured by radar gun to allow adjusting the data to account for variations in speed, as 
illustrated in Figure 3.2.   
 
In the controlled pass-by method (CPB) specific vehicles are driven at known speeds past the 
same microphone array as used in the SPB method.  There are advantages and disadvantages 
to each method (15).  The deciding factor for the selection of the method to use in this study 
was the presence of traffic on I74; road closures on interstates near Indianapolis require 
specific justification and special approval.  
 
Details and discussion about the results of controlled pass-by testing conducted while the road 
was still closed to traffic are available in both the final report on the short-term evaluation (1) 
and a TRB paper (22).  Those results are shown in Chapter 4 for information, but it is important 
not to attempt to directly compare the results of testing using the two different methods.   
 
It is also important to note that the standard decibel scale used for noise data, as presented in 
this report and elsewhere, is a logarithmic scale rather than a linear scale.  This difference is 
particularly important when comparing relative levels.  Doubling the sound energy (source 
strength) increases the sound pressure level (SPL) by 3 dB. (2)  Also, sound is frequently 
reported in terms of A-weighted SPL; A-weighting reflects how the human ear responds to 
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sounds by giving more emphasis to the loudness of sounds at the frequencies to which we are 
most sensitive.  SPLs to which the A-weighting scheme has been applied are designated dB(A). 
 

 

Figure 3.1.  Pass-By Measurement Site (I74) and Microphone Setup 

 
In addition to the previously mentioned noise measurement methods, during the short-term 
study, the National Center for Asphalt Technology (NCAT) tested the three sections with a 
close-proximity trailer.  This method consists of placing microphones near the tire/pavement 
interface to directly measure the tire/pavement noise levels.  The microphones are arrayed near 
the tire on a trailer, as illustrated in Figure 3.3.  A cover on the trailer is lined with acoustical 
foam to limit extraneous traffic noise.  The measured noise levels are obviously higher than the 
sideline measurements because they are measured so close to the tire/pavement interface, thus 
allowing little opportunity for attenuation of the sound. 
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Figure 3.2.  Measuring Vehicle Speed during SPB Measurement 

 
 

 

Figure 3.3.  Schematic of Locations of CPX Microphones Relative to Tire/Pavement Interface 
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It was originally planned that the long-term follow-up study also include the use of the NCAT 
CPX trailer.  Due to scheduling conflicts, however, this measurement could not be 
accomplished. 

3.2  Friction and Texture Measurements 

It is well known that some of the noise generation mechanisms are strongly influenced by the 
surface texture of the pavement. (2)  The friction level provided by the surface is also a 
function of the surface texture.  Clogging of the voids in the porous surface, which could reduce 
the noise reduction characteristics of the pavement, could be measured by changes in the 
surface texture.  Texture could also reveal loss of aggregate, or raveling of the surface, which 
could indicate a durability problem with the surface.  Therefore, the measurement of texture 
and friction was continued throughout this evaluation.  Attempts were made to conduct the 
friction and texture tests soon after the noise testing in order to measure the pavement 
characteristics in as similar a condition (combination of temperature, precipitation, traffic wear, 
etc.) as possible.  Because the friction/texture testing required traffic control (whereas the noise 
testing did not), it was not always possible to coordinate these measurements to within a few 
days of each other. 
 
The surface texture of the three pavements was measured using the Circular Track Meter 
(CTM) as described in ASTM E2157.  The CTM uses a charge coupled device (CCD) laser 
displacement sensor to measure the surface profile.  The laser sensor is mounted on an arm 
that rotates around a central point at a fixed distance above the pavement and measures the 

change in elevation of points on the surface.  The laser spot size is 70 m (2.76  10-3 in) and 

the vertical resolution is 3 m (0.12  10-3 in).  The CTM collects data around the circumference 
of a circle 284 mm (11.2 in) in diameter.  The CTM allows determination of the mean profile 
depth (MPD) in mm. 
 
The Dynamic Friction Tester (DFT) is a portable device that allows direct measurement of the 
friction of a variety of surfaces, including pavements.  The testing and data analysis are 
standardized under ASTM E1911.  The DFT consists of a horizontal spinning disk fitted with 
three spring-loaded rubber sliders that contact the surface.  The standard sliders are made of 
the same type of rubber as is used in friction test tires (though other materials are available for 
other, non-highway applications).  The disk rotates at tangential velocities up to 90 kph (55 
mph).  Water flows over the surface being tested, so wet friction is measured, as is done with 
the towed friction trailer.  The rotating disk is then dropped onto the wet surface and the 
torque is continuously measured as the disk slows.  Wet friction is then calculated from the 
measured torque.  This continuous measurement allows determination of the speed 
dependency of the surface friction.  The DFT is affected by both the microtexture and 
macrotexture of the surface.  The unitless DFT number at a speed of 20 km/h (DFT20) is the 
main parameter of interest here as it is used in the calculations of friction index described 
below. 
 
The CTM and DFT operate on the same footprint.  Results from the two devices can be 
combined to yield the International Friction Index (IFI) according to ASTM E1960.  The IFI was 
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developed in Europe to harmonize, or provide a means to compare, friction measurements from 
a wide variety of test methods (20).  The IFI consists of two parameters, the calibrated friction 
at 60 km/h (F60) and the speed constant, Sp.  The F60 value is of primary importance and is 
the one examined in detail in this report.  More details on the CTM, DFT and IFI are available in 
Reference 21. 
 
Lastly, friction was also measured annually (in the fall) by INDOT using the conventional ASTM 
E274 towed friction trailer shown in Figure 3.4.  The towed friction trailer tests wet sliding 
friction by spraying water ahead of a test tire mounted on the trailer travelling at constant 
speed then locking the trailer brakes.  The torque on the tire caused by friction with the surface 
is recorded and used to calculate the coefficient of wet sliding friction.  The friction number 
(designated SN) reported is the coefficient of wet friction multiplied by 100.   
 
 

 

Figure 3.4.  Towed Friction Trailer 

 
Different types of tires, ribbed and smooth, can be used on the trailer.  The smooth, or bald, 
tire is generally considered to be sensitive to both micro and macrotexture, while the rib tire is 
more sensitive to microtexture.  The ribs essentially provide the tire with its own macrotexture.   
 
It was originally proposed to conduct permeability testing on these surfaces as well as the other 
tests described above.  It was envisioned that this would help to evaluate changes in the air 
void content of the pavement without destructive coring.  If clogging of the pores were to 
occur, the permeability of the pavement would likely decrease.  Coring was also considered, as 
a last resort, to measure the air void content and/or determine the cause of loss of permeability 
(clogging or collapse of the PFC), but this was to be avoided, if possible, to prevent damaging 
the surface.   
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Permeability testing on the PFC was attempted, but the surface had so much texture that it was 
not possible to get reliable permeability measurements.  The water would simply flow away too 
fast.  Therefore, this testing was abandoned.  The laser-based texture measurements are 
considered more reliable and more meaningful.  (A substantial change in texture indicating a 
potential loss of permeability would have triggered a second attempt at permeability testing or 
coring for lab permeability testing, but this change was not observed.) 
 

3.3  Traffic Levels and Field Testing Schedule 

As already mentioned, the three pavements were constructed in 2003 and were tested for a 
period of five years (between April and the middle of October).  An attempt was made to 
capture a wide range of the weather conditions and to conduct tests during different seasons.  
Pavements were tested at air temperatures between 5°C and 34°C (between 41°F and 93°F) 
and pavement surface temperatures between 5°C and 50°C (between 41°F and 122°F) on both 
cloudy and sunny days.  The relative humidity during testing also varied from 40% up to 80%. 
 
Information about the traffic on the three highway test sections monitored periodically over the 
last three years of the monitoring period is summarized in Table 3.1.  Based on Average Annual 
Daily Traffic (AADT) information from INDOT, the number of vehicle axle passes (NVA) on each 
test section (per month) was calculated using several simplifications (22).  It was assumed that 
an equal number of vehicles were driven in both directions (AADT was divided by two) and that 
55% of the vehicles were using the driving lane on both I74 and US52, with the remaining 45% 
of vehicles using the passing lane.  It was also assumed that the average truck has 4.5 axles 
and the average car has 2 axles.  Results were multiplied by 30, which is the assumed number 
of days per month.  No traffic growth adjustment factors were employed.  This simplified 
equation for NVA has the following form: 
 

NVA = (AADT) · 0.5 · 0.55 · [%Trucks · 4.5 + (100% - %Trucks) · 2] · 30   (1) 
 
The number of vehicle axles was then used to express the cumulative traffic level.  Cumulative 
traffic level was calculated based on the NVA passing through the test section multiplied by the 
period of time when the sections were exposed to traffic.  Note that this is only an approximate 
calculation.  However, for the purposes of this study, this should be precise enough.   
 
The testing schedule for the DGA, SMA and PFC sections is shown in Table 3.1.  Note that the 
CPX and CPB tests were conducted before opening the road to traffic while SPB tests were 
conducted periodically over the last four years of the study under traffic.   
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Table 3.1.  Summary of Traffic Data, and Construction and Field Testing Dates 

Section / Mixture DGA 
PFC  
SMA 

Road Categorya US I 

Average Annual Daily Traffic, AADT (103)  
% Trucks in AADT 

31.5  
5% 

37.3 
26% 

Number of Vehicles Axle (NVA) /month (103)  451 980 

Pavement Construction Date (Month, Year) June 2003 July 2003 

CPX Test, Date 9/3/2003 9/3/2003 b 

CPB Test, Date 8/28/2003 8/28/2003 b 

SPB Test, Date 

6/20/2005 
5/5/2006 

10/10/2006 
4/9/2007 
7/9/2007 
9/21/2007 
8/19/2008 

6/17/2005 
4/27/2006 
10/10/2006 
4/20/2007 
7/9/2007 
9/18/2007 
8/19/2008 

Date of DFT/CTM Test  

9/6/2003 
 

5/5/2006 
10/30/2006 
4/10/2007 
7/10/2007 
9/25/2007 
10/30/2008 

9/10/2003 b 

8/1/2005 
11/16/2005 
10/3/2006 
4/10/2007 
7/25/2007 
9/25/2007 
10/29/2008 

Date of Friction Trailer Test  
(Month, Year) 

8/2004 
9/2007 

9/2004 
9/2005 
9/2006 
9/2007 
9/2008 

a Road category: US – US highway, I – interstate highway. 

b Before opening to traffic. 
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CHAPTER 4. DATA ANALYSIS 

 
This chapter summarizes the noise, friction and texture test data and the analysis of the results. 
 

4.1  Noise Testing Results 

The analysis of the noise testing data focuses mainly on the SPB results because they were 
repeated at various points in time.  The CPX method was only used for the initial tests; 
therefore those results will only be discussed briefly.  The CPB results were also only collected 
initially.  The measurement technique is very similar to SPB testing, however, so those results 
are discussed in somewhat more detail.  In addition, because of the lower traffic level and lower 
speeds of vehicles on the DGA section, compared to the PFC and SMA sections, the DGA data is 
not as meaningful as it would be had that section been placed on I74 with the others.  
Therefore, this data will not be emphasized, though it will be discussed briefly. 
 
For the SMA and PFC sections, two vehicle categories were investigated: category 1 (100 
passenger cars) and category 2b (80 multi-axle heavy vehicles) as defined in ISO 11819-1.  Due 
to the existing traffic conditions, only category 1 vehicles were investigated in the DGA section; 
there are so few heavy trucks on this roadway that the testing time would have been excessive. 
 
For each section and for each vehicle category, a regression line of the maximum A-weighted 
SPL versus the logarithm of speed was calculated.  The average SPL is determined at a 
reference speed from this regression, according to ISO 11819-1.  The standard reference 
speeds considered depend on the vehicle and road category.  Therefore, for the CPB tests 
conducted on the PFC and SMA sections, noise was determined for vehicles passing by at 110 
km/h (68 mph) while for DGA section it was determined at a speed of 80 km/h (50 mph) due to 
the differences in road categories, i.e., interstate vs. US highways. 
 
During the SPB testing, the vehicle speeds for cars in both the SMA and PFC sections were close 
to the appropriate reference speed, however, the speed of heavy vehicles was higher than the 
reference speed.  For the DGA section, the actual average speed (92 km/h (57 mph)) was 
between two reference speeds of 80 km/h and 110 km/h (49 mph and 68 mph)). 
 
Due to the differences between the reference and existing speeds, the results of the CPB and 
the SPB tests cannot be directly compared.  Moreover, due to the speed differences, the DGA 
section cannot be compared in a straightforward way to the PFC and SMA sections.  Therefore, 
for analysis purposes, the sound levels at other speeds were compared.  The tire/pavement 
noise of trucks driving at a speed of 100 km/h (62 mph) was calculated from the regression 
line.  For the PFC and SMA sections, SPLs corresponding to car speeds of 110 km/h (68 mph) 
and 100 km/h (62 mph) were calculated, while for the DGA section SPLs corresponding to car 
speeds of 90 km/h (56 mph) and 100 km/h (62 mph) were determined.  The speeds at which 
SPLs were calculated were within the allowable range, as per ISO 11819-1, where this range is 
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defined as “plus-or-minus one standard deviation from the actually measured average speed for 
heavy vehicles and plus-or-minus one-and-a-half standard deviations for cars.” 
 
Changes in the tire/pavement noise with time and traffic volume are shown graphically in Figure 
4.1 for passenger vehicles and in Figure 4.2 for heavy vehicles at 100 km/h (62 mph).  (These 
results for the PFC and SMA are presented numerically in Table 4.1.)  Sound levels produced by 
vehicles travelling at different speeds were normalized to 100 km/h (62 mph) to allow direct 
comparison between the sections and vehicle categories.  Note that noise from the heavy 
vehicles driving on the DGA section was not determined because there were so few of them in 
the existing traffic stream. 
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Figure 4.1.  Changes in Noise Level (at 100 km/h) vs. Accumulated Traffic (Passenger Cars) 
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Figure 4.2.  Changes in Noise Level (at 100 km/h) vs. Accumulated Traffic (Heavy Vehicles) 

Note: noise from heavy vehicles was not measured on the DGA section. 

Table 4.1.  Comparison of SPB SPL on SMA and PFC for Vehicles at 100 km/h 

Vehicles Passenger Heavy 

Date SMA, dB(A) PFC, dB(A) Difference SMA, dB(A) PFC, dB(A) Difference 

6/2005 81.2 75.2 6.0 89.8 86.9 2.9 

5/2006 81.4 74.7 6.7 89.5 86.3 3.2 

10/2006 81.0 74.9 6.1 90.0 85.7 4.3 

5/2007 79.8 75.7 4.1 87.4 87.2 0.2 

7/2007 79.9 75.4 4.5 89.4 86.3 3.1 

10/2007 80.1 75.4 4.7 89.7 86.1 3.6 

8/2008 80.5 75.5 5.0 89.4 86.1 3.3 

 
In general, it can be observed that the PFC section is the quietest, yielding a SPL of about 75 
dB(A) for passenger vehicles and about 86 dB(A) for heavy vehicles at 100 km/h.  The SMA 
section is the loudest, with a SPL about 80 dB(A) for passenger vehicles and about 90 dB(A) for 
heavy vehicles.  The SPL in the DGA section is about 78 dB(A) for the passenger vehicles at 100 
km/h, as shown in Figure 4.1. 
 
Table 4.1 shows the numerical differences between the SPLs for the SMA and PFC for 
passenger cars and heavy vehicles at 100 km/h.  Examination of this table reveals that the 
difference between the SMA and PFC was greater for passenger cars through 2006, then the 
difference decreased from around 6 to around 4 or 5 dB(A).  (The SMA was louder in every 
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case.)  Since 2007, the difference has increased from 4.1 to 5.2 dB(A), mainly because the SMA 
has gotten somewhat louder; the PFC SPLs have been quite consistent.   
 
For heavy vehicles, the SPLs have been higher, as expected.  The differences between the SMA 
and PFC have also been lower, averaging around 3 dB(A).  There was one set of measurements 
(collected in May 2007) where the difference between the SMA and PFC was only 0.2 dB(A) at 
100 km/h.  This data appears anomalous since the passenger car data at the same time does 
not show this change and the measurements two months later are back in line with the other 
readings.  Otherwise the readings in the two sections and the differences between them have 
been quite consistent.  
 

Table 4.2.  Comparison of SPL on SMA and PFC for Passenger Cars at 110 km/h 

Date SMA, dB(A) PFC, dB(A) Difference 

8/2003* 79.6 73.2 6.4 

6/2005 81.6 75.7 5.9 

5/2006 82.0 75.2 6.8 

10/2006 81.5 75.2 6.3 

5/2007 80.1 76.6 3.5 

7/2007 80.4 76.1 4.3 

10/2007 80.6 76.1 4.5 

8/2008 81.4 76.0 5.4 

*Measurements on 8/03 by CPB method, all others by SPB. 
 
The results for passenger cars at 110 km/h, shown in Table 4.2, generally show slightly higher 
noise levels, as expected.  This data also indicates a narrowing of the difference between the 
SMA and PFC after October 2006, followed by a slight increase in the difference.  It is 
reasonable that the trends would be the same as at 100 km/h since the same data sets were 
used, but were merely analyzed at speeds that were only 10 km/h different.  The analysis was 
done at 100 km/h, though, in an attempt to relate the CPB testing from 2003 to the SPB data 
collected later.  The CPB testing was conducted with three vehicles at 100 km/h (1).  Because 
of the differences in the traffic stream, the results are not strictly comparable.  This analysis 
does show, however, that the relative difference between the SPLs on the SMA and PFC was 
comparable in 2003 to later years.  The CPB-measured sound levels were lower on both 
pavement sections; it cannot be determined definitely if this is because of the different vehicles 
evaluated or differences in the pavements caused by traffic.  Both factors probably played a 
role.  It is reasonable to assume that the wearing away of the asphalt film coating the exposed 
aggregate particles on the surface of the pavement caused an increase in the noise level 
between the time of construction and the first SPB testing in 2005. 
 
Close-proximity testing was conducted in early September 2003 by NCAT.  The noise levels 
measured are shown in Table 4.3.  These values are much higher than the sideline noise levels 
because the readings are taken near the tire/pavement interface.  The difference in noise for 
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the SMA and PFC is around 5 dB(A), which is comparable to the CPB and SPB tests.  So, despite 
differences in how the noise levels were measured, the PFC is consistently quieter than the SMA 
by about 5 to 6 dB(A), at least until 2006 when the difference decreases slightly to around 4 to 
5 dB(A).  Even the lower value represents a significant difference since an increase of 3 dB(A) is 
equivalent to doubling the sound energy.  
 

Table 4.3.  CPX Sound Pressure Levels (dB(A)) 

Speed DGA SMA* PFC* 

72 km/h 93.0 94.2 89.7 

97 km/h 96.4 97.6 92.6 

*Tested before opening to traffic. 
 

4.2  Texture and Friction Testing Results 

 
The three sections were periodically tested for texture and friction as described in Chapter 3.  
Test data shown in this section were averaged for each specific section.  The DFT/CTM data 
from both the left and right wheelpaths were combined; no appreciable differences were noted 
between the readings in different wheelpaths.  Data from the friction trailer was collected in the 
left wheelpath only.  The MPD, DF20 and IFI values are summarized in Table 4.4. 
 
Changes in the macrotexture (expressed by MPD values) are shown in Figure 4.3 where dashed 
lines are used to mark the MPD range for each section.  The MPD value for the PFC section was 
about 1.4 mm, for the SMA about 1.1 mm and for the DGA sections about 0.5 mm.  For the 
SMA and PFC sections, the MPDs obtained from the pavements before they were opened to 
traffic were similar to those collected at later ages.  However, for DGA the macrotexture 
increased after the initial tests (conducted soon after opening to traffic).  There is not a 
significant change in texture corresponding to the change in noise levels that occurred between 
2006 and 2007. 
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Table 4.4.  Changes in MPD, DF20 and F60 over Time 

Section Date MPD, mm DF20 IFI (F60) 

PFC 

9/03 1.37 0.51 0.36 

8/05 1.52 0.65 0.45 

11/05 1.40 0.60 0.41 

10/06 1.37 0.52 0.37 

4/07 1.49 0.63 0.43 

7/07 1.44 0.61 0.42 

9/07 1.38 0.54 0.38 

10/08 1.48 0.60 0.42 

SMA 

9/03 1.17 0.37 0.27 

8/05 1.10 0.72 0.45 

11/05 1.10 0.72 0.45 

10/06 1.03 0.61 0.39 

4/07 1.08 0.77 0.47 

7/07 0.98 0.70 0.43 

9/07 1.08 0.66 0.42 

10/08 0.93 0.69 0.42 

DGA 

9/03 0.30 0.52 0.22 

5/06 0.48 0.41 0.23 

10/06 0.55 0.39 0.23 

4/07 0.58 0.45 0.26 

7/07 0.54 0.47 0.26 

9/07 0.59 0.44 0.26 

10/08 0.63 0.41 0.25 
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Figure 4.3.  Changes in Macrotexture (MPD) over Time and Traffic for All Sections 

 
Changes in the dynamic friction (DF20) values are shown in Figure 4.4.  Again, dashed lines are 
used to mark the DF20 range for each section.  The DF20 values for the PFC and SMA pavements 
before opening to traffic were lower than those measured at later ages.  This finding is not a 
surprise, as new pavement typically has lower microtexture due to the binder coating the 
aggregate surface.  This asphalt film is typically quickly removed by the polishing action of the 
tires, resulting in increased friction.  Later, the DF20 values varied, but the changes were not 
significant and no consistent downward trend was observed. 
 
For the analysis of the variations in DF20 values, the date when the tests were conducted should 
also be taken into account, because seasonal variations in friction are commonly observed.  
Indeed, the seasonal variations in friction reported in the literature (e.g., 23-25) could be 
observed here.  For example, when comparing the test results obtained during different months 
of 2007, it can be observed that the DF20 values recorded in August were higher than those 
recorded in October.  When the friction data of tests conducted during similar seasons (in 
October and November) of 2005-2008 were compared for the same section, average DF20 
values were about 0.6 for PFC, 0.7 for SMA and 0.4 for DGA.  It was noticed that the results of 
tests conducted in the fall of 2006 (for all three sections) were lower than the average values.  
This can be most likely explained either as a seasonal variation phenomenon or as a 
measurement error. 
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Figure 4.4.  Changes in Dynamic Friction (DF20) over Time and Traffic for All Sections 

 
Using the DF20 and MPD data, International Friction Indices (IFIs) were calculated following 
ASTM E1960.  Results of the calibrated wet friction F60 (one of the IFI parameters) are shown 
in Figure 4.5 (dashed lines are used to mark the DF20 range for each section) and in Table 4.4.  
This shows that the trend, in general, followed the previously mentioned results of tests with 
the DFT device.  The average F60 value is about 0.4 for the PFC and SMA and 0.2 for the DGA. 
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Figure 4.5.  Changes in F60 over Time and Traffic for All Sections 

 
In addition to the friction measurements conducted with the DFT device, changes in friction 
were also monitored using the ASTM E274 friction trailer at an adjusted speed of 64 km/h (40 
mph) with a smooth tire (designated SN(64)S).  The test results from the friction trailer, 
presented in Figure 4.6, seem to correspond well with those presented previously for the DFT 
device (see Figure 4.3).  Note that for the PFC and SMA sections, the friction tests were 
conducted during the fall season only to avoid seasonal variations. 

 
Figure 4.6 shows that the SMA and PFC surfaces provide similar friction levels and both provide 
significantly higher friction than the DGA section.  (Note, however, that the DGA friction level is 
still acceptable.)  The average friction level on the SMA was slightly above that of the PFC in 
2007 and 2008, but this is not necessarily a statistically significant difference as it is within the 
typical variation in friction trailer testing on asphalt pavements with friction levels around 50 
(26).  The friction levels for both the PFC and the SMA appear to be fairly stable. 
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Figure 4.6.  Changes in Friction Trailer Results (SN(64)S) over Time and Traffic 

 
 
4.3  Other Considerations 
Besides noise, texture and friction, there are a few other factors of concern regarding porous 
surfaces.  One is their overall durability compared to more conventional surfaces; while some 
durability problems might affect the texture, others might not.  Another concern is 
maintenance, especially in winter.  There are some reports that porous friction courses can be 
cooler than other pavements, leading to earlier icing.  Also, because of their void structure, 
additional quantities of salt might be needed for deicing.  On the other hand, some salt can be 
“stored” in the pores after application helping to prevent icing at a later time.  An advantage of 
porous surfaces is improved water drainage, which leads to reduced splash and spray, however, 
the longevity of that benefit is unknown. 
 
Visual Inspection 
 
Informal visual inspections were conducted each time the sites were visited.  No significant 
distresses were observed during testing.  As a close out activity, the I74 site was visited on 
March 3, 2009, for inspection and photographing (see Figures 4.7 through 4.11).  Again, no 
particular distresses were noted in either the PFC section or the SMA.  The SMA did appear to 
have some bleeding in the wheelpaths in some areas, but this phenomenon was spotty and not 
severe.  Both the SMA and PFC appeared to be in very good condition and retained their deep 
black color.   
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Another observation made in March 2009 was that difference in the interior car noise was still 
discernable when passing from the SMA to the PFC.  The interior noise immediately decreased, 
providing further confirmation that the PFC had retained its noise reduction properties. 
 

 

Figure 4.7.  Appearance of the PFC Surface after Five Years (3-3-09) 

 

 

Figure 4.8.  Close Up of the PFC Surface Texture (3-3-09) 
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Figure 4.9.  Appearance of the SMA Surface after Five Years (3-3-09) 

 

 

Figure 4.10.  Close Up of the SMA Surface Texture (3-3-09) 
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Maintenance 
 
Maintenance was an area of performance that was evaluated somewhat subjectively.  The 
responsible maintenance unit was contacted to provide feedback on any differences in the 
maintenance needs of the PFC section compared to the adjacent SMA sections.   
 
One particular item of concern was the potential for icing of the PFC surface and the possible 
need for additional deicing chemical use during winter maintenance.  Porous pavements may be 
colder than dense graded mixtures and may ice up faster.  The maintenance unit supervisor 
noted that the test section tended to retain snow after the rest of the pavement was clear.  It 
took one to two additional applications of salt to clear the PFC surface.  Clearly this fact could 
have an impact on winter maintenance budgets if this type of surface were widely used. 
 
The maintenance unit also noticed that although the PFC drains water into the surface during a 
rain event (reducing the splash and spray), the porous surface appeared to stay wet longer 
after the rain stopped than the SMA.  This may be because water was held in the voids of the 
pavement instead of running off the surface or being dissipated through the splash and spray 
from tires.  While it might seem that this could affect moisture damage of the pavement, it 
must be remembered that stripping also requires pressure from the tires to push water into the 
interface between the asphalt binder and the aggregate; the porous nature of the test surface 
may not allow that pressure to build up sufficiently.  If the PFC is indeed holding water, that 
could also ultimately affect stripping of the underlying layer.  This could become a problem if 
the PFC ever has an overlay placed on top of it, because water could certainly be trapped then.  
No indications of any stripping, either in the PFC or below it, have appeared to date.   
 
During the inspection in 2009, surface temperature measurements were taken in the PFC and 
SMA sections to see if there was a difference.  The air temperature (from weather.com) was 
around 2°C (28°F) and the PFC surface temperature (measured with a non-contact 
thermometer) was approximately 9°C (49°F).  The SMA was slightly cooler at 7°C (44°F). 
 
To further investigate the potential variation in surface temperature between these sections, 
the raw towed friction trailer data files were examined.  The trailer records the air and 
pavement temperatures (in °F) continuously during testing.  This data showed comparable 
temperatures on both pavements during individual runs through the test sections.  The 
pavement temperatures increased from about 30°C (86°F) on the first run to about 37°C (99°F) 
on the second trip through the site. During these runs, the air temperature increased from 
about 24 to 26°C (75 to 79°F) as the day progressed (over about one hour at mid-day).  
 
Splash and Spray 
Although no quantified measurements of splash and spray were conducted, based on visual 
observation of the pavement performance during a rain event, the drainage benefits of the PFC 
pavements were recognized.  During the rainstorm event, the observed splash and spray in the 
PFC section was considerably lower than that observed in the SMA and DGA sections.  This 
improvement was noticed especially when passing heavy vehicles, which typically produce large 
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amounts of splash and spray.  A video documenting this is available online at 
https://engineering.purdue.edu/NCSC/video/I-74_OGFC.MPG/.  Figure 4.11 also illustrates the 
difference in the drainage properties of the PFC and SMA during a light to moderate rain event. 
 

 

Figure 4.11.  PFC Surface Draining Rainwater (left) vs. Standing Water on the SMA (right) 
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CHAPTER 5. CONCLUSIONS 

Based on the data presented here, the following conclusions can be drawn: 
 The Porous Friction Course is still providing sound pressure levels that are significantly 

lower than those of the SMA or the DGA after five years under traffic in the Indiana 
climate. 

 The SPL values for the PFC are about 5 dB(A) lower than the SPL values for the SMA for 
passenger cars and about 3 dB(A) lower for heavy trucks. 

 Regardless of the measurement technique used (CPX, CPB or SPB), the relative 
differences between the SMA and PFC were similar. 

 The PFC is still performing very well in terms of noise reduction after five years. 
 The macrotexture of the SMA and PFC has remained quite consistent over time, but the 

macrotexture of the DGA increased after the initial test. 

 There are no indications that the PFC voids have become clogged. 
 The friction levels provided by the SMA and PFC increased after traffic abraded away the 

binder film coating the aggregates on the surface.  This likely also happened with the 
DGA, but measurements were not made before this section was opened to traffic. 

 After the binder film was worn away, the friction levels have been consistent, whether 
measured by DFT or towed friction trailer. 

 The SMA and PFC provided similar friction levels, which were much higher than the DGA 
(though the DGA friction level was still acceptable). 

 Visual inspections show that both the SMA and the PFC are performing well with little to 
no distress of any kind. 

 The PFC reportedly requires one or two more salt applications than the SMA to remain 
ice-free in snowy conditions.  

 Dramatically less splash and spray was produced by traffic on the PFC during a rain 
event than on the SMA. 

 The PFC has not (yet) exhibited the deterioration of the noise, friction and texture 
properties that was thought to be probable under Indiana traffic and climate conditions. 

 PFC surfaces appear to be viable tools for the design of low noise, high friction surfaces 
for Indiana roadways.   
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CHAPTER 6. DISCUSSION AND RECOMMENDATIONS 

 
Based on the successful performance of this test section of porous friction course, INDOT now 
has a new tool that can be used to provide a high quality, high friction surface while also 
reducing splash and spray and reducing tire/pavement noise.  This surface type could be used 
on facilities where the high speed and volume of the traffic will help to keep the voids clear of 
dirt and debris.  The use of this type of surface has not been proven for lower speed, lower 
traffic facilities, so it should not be used in those types of applications without further evaluation 
under those conditions. 
 
INDOT’s Traffic Noise Policy (27) describes how the State complies with the federal noise 
standards.  The policy defines when abatement must be considered and what factors affect the 
need for abatement and type of abatement implemented.  This policy is applicable to Type I 
projects, which include construction on a new location; significant changes in horizontal or 
vertical alignment; added travel, truck or high-occupancy vehicle lanes; or construction of new 
interchanges or ramps.  Since current FHWA policy does not allow consideration of the 
pavement surface type as a mitigation factor, and since INDOT has limited ability to implement 
other measures such as traffic calming, changes in alignment , acquisition of buffering land or 
noise insulation of adjacent structures, the most common form of mitigation is the erection of a 
barrier wall.  (The FHWA policy does not mean that a PFC cannot be used on Federal-Aid 
projects if it is selected for other reasons such as improved visibility or friction, but its use 
cannot be considered to obviate the need for noise abatement.) 
 
This policy, however, only applies to federal-aid projects.  It does not apply to state or locally 
funded projects.  One of the requirements of the policy is for INDOT to share traffic noise 
information with local agencies that have jurisdiction over adjacent land use.  As local agencies 
and the general public become more aware of traffic noise and mitigation strategies, as they 
have in many other locales, the demand for noise mitigation may expand beyond federal-aid 
projects.  In these cases, PFC surfaces may satisfy the public’s demand for lower traffic noise.  
Use of a PFC will reduce the noise generated at the tire/pavement interface and will reduce 
noise for those nearby properties that do not benefit from a noise wall (e.g., those not in the 
acoustical shadow of the wall).  In other words, there may be cases where noise mitigation is 
not required by the FHWA but it may be desirable for public relations or in sensitive areas that 
are not on the federal-aid system.  Possible locations where this might be the case include 
locations near schools, hospitals or other sensitive structures; on roadways adjacent to 
parklands or scenic areas; or in locales where the public is active and demanding noise 
reductions. 
 
The INDOT policy also defines “substantial noise reduction” as providing at least 7 dB(A) for the 
majority of the receivers.  The PFC achieved a noise reduction of 5 to 6 dB(A) compared to the 
SMA, which is a significant decrease even though it does not meet INDOT’s definition of 
“substantial.”  Under this definition, then, a PFC would not qualify as a substantial noise 
mitigation measure even if FHWA allowed its consideration.  Nonetheless, for some locations 
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where noise reduction may be desirable even though not required, use of a PFC may be 
effective and feasible. 
 
PFCs also provide drivers with a safe surface offering improved visibility in wet weather.  There 
may be isolated locations where this type of safety improvement is advantageous.  The study 
section evaluated here was too short to allow an investigation of the safety impacts of the PFC 
aside from quantifying the friction levels and observing reduced splash and spray.  The potential 
improvement in safety should be further evaluated on a longer section. 
 
Eventually, the FHWA position on noise mitigation techniques may change as additional 
research demonstrates the longevity of the noise benefits of various pavement surfaces, 
including porous friction courses.  The current philosophy is that once a noise wall is erected, it 
is essentially permanent.  If enough evidence shows that the noise benefits of PFC last as long 
as the pavement surface itself, then FHWA policy may change.  (The results may be of interest 
to the FHWA as they consider their current noise policies.)  This could result in huge cost 
savings through the elimination, or at least reduction, in noise walls.  It is also possible that 
future research and experience may show that the use of quieter pavement surfaces may 
reduce the required wall height, which can have a great impact on cost. 
 
This study focused on evaluating the performance of a PFC under Indiana conditions because of 
the concerns that the performance would be compromised by clogging of the voids.  The study 
was not designed to specifically evaluate costs.  Nonetheless, some discussion of costs is 
appropriate. 
 
The Georgia DOT, which has led the US in implementation of porous asphalt technology for 
many years, routinely uses the underlying SMA to stop the downward movement of water into 
the pavement structure.  Water entering the PFC travels across the surface of the SMA to the 
shoulder.  The Georgia cross-section was the example followed in construction of this 
experimental section.  INDOT did small a smaller nominal maximum aggregate size PFC (9.5mm 
vs. 12.5mm) in a thinner lift (30mm vs. 40mm) than is typically used in Georgia to reduce costs 
and reduce the drop-off at the edge of the lane. 
 
Adding the PFC atop the SMA, which would normally be the surface course for interstates in 
Indiana, increases the cost of the pavement.  Since the SMA would not be used as the surface, 
however, it should be possible to replace the commonly used steel slag aggregate with dolomite 
in the SMA.  The surface friction would be provided by the PFC, which would be constructed 
with steep slag.  Replacing the steel slag in the SMA would have a major impact on costs and 
would help to offset the added cost of the PFC. 
 
If the use of a PFC can reduce or eliminate the need for a noise barrier wall (on non-federal aid 
projects or if FHWA policy changes), this would more than offset the added material costs by 
greatly reducing the overall project costs, as discussed in section 6.1.  If a PFC were to be used 
with a barrier wall, the overall project costs would be higher, so would be hard to justify unless 
a marked improvement in safety could be proven.  
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Use of PFCs may also result in higher costs for winter maintenance because of the need for 
more salt applications.  If used extensively, this increased cost could be significant, therefore 
sites where PFCs are to be used should be selected carefully. 
 

6.1  Expected Benefits, Deliverables, Implementation and Cost Savings 

In summary, PFC surfaces could be attractive options for high speed roadways adjacent to 
locations where reduced tire/pavement noise is desired for aesthetic or environmental reasons 
(parklands, scenic routes, schools, residential areas, etc.), especially where federal-aid funds 
are not being used to finance the improvements.  PFC surfaces may also provide benefits in 
areas where high friction is needed or splash and spray is a particular problem. 
 
The Office of Pavement Engineering and the Pavement Design Committee should consider 
specifying a PFC surface in specific locations where its benefits would be advantageous, 
especially when Federal-aid funds are not involved.  These locations should have high speed 
and relatively high volume traffic.  A PFC may also be used on Federal-aid projects for reasons 
other than noise, if desired, but the costs will be higher.  Such locations might include areas 
where drainage issues between the noise barrier walls might lead to water on the pavement 
resulting in increased splash and spray or where higher friction (reduced hydroplaning) is called 
for. 
 
Use of PFCs is likely to be limited under current policies and based on the results of this study, 
which did not evaluate safety in detail.  Construction of a longer section of PFC and comparison 
to a section of SMA surface is recommended to better evaluate the safety effects (accident 
rates, friction, visibility) of the PFC as well as actual construction and maintenance costs.  
(Noise could also be measured occasionally to confirm the findings of this project.)  Selecting 
and interstate paving contract and placing PFC (placed atop a dolomite SMA) on one half of the 
project with a steel slag SMA on the other half would be a positive next step in the 
implementation of this technology.   
 
Noise barrier walls typically cost in excess of $1-2 million per mile.  For example, a 2004 
contract in the Fort Wayne district included 33,460 linear feet of wall at a total cost of $8.1 
million dollars, or a cost of $1.28 million per mile of wall.  The total cost of this project was 
$80,000.  Therefore, if just one mile of wall is not needed, the benefit:cost ratio for this study 
would be over $1 million/$80,000, or 12.5:1 even considering the added cost of the PFC.  Even 
though winter maintenance costs could be somewhat higher for PFCs, the number of miles 
where these would be used is likely relatively small (under current policies) so the overall 
impact of these increased costs is not expected to be great. 
 
The findings of this project may also be of interest to the Office of Environmental Services, 
Division of Production Management, which oversees the Traffic Noise Policy and its 
implementation during the National Environmental Policy Act (NEPA) evaluation.  
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